Betti splitting via componentwise linear ideals
نویسندگان
چکیده
منابع مشابه
Componentwise Linear Ideals with Minimal or Maximal Betti Numbers
We characterize componentwise linear monomial ideals with minimal Taylor resolution and consider the lower bound for the Betti numbers of componentwise linear ideals. INTRODUCTION Let S = K[x1, . . . ,xn] denote the polynomial ring in n variables over a field K with each degxi = 1. Let I be a monomial ideal of S and G(I) = {u1, . . . ,us} its unique minimal system of monomial generators. The Ta...
متن کاملSome Families of Componentwise Linear Monomial Ideals
Let R = k[x1, . . . , xn] be a polynomial ring over a field k. Let J = {j1, . . . , jt} be a subset of {1, . . . , n}, and let mJ ⊂ R denote the ideal (xj1 , . . . , xjt). Given subsets J1, . . . , Js of {1, . . . , n} and positive integers a1, . . . , as, we study ideals of the form I = m1 J1 ∩ · · · ∩ m as Js . These ideals arise naturally, for example, in the study of fat points, tetrahedral...
متن کاملThe Lefschetz Property for Componentwise Linear Ideals and Gotzmann Ideals
For standard graded Artinian K-algebras defined by componentwise linear ideals and Gotzmann ideals, we give conditions for the weak Lefschetz property in terms of numerical invariants of the defining ideals.
متن کاملGraded Betti Numbers of Ideals with Linear Quotients
In this paper we show that every ideal with linear quotients is componentwise linear. We also generalize the Eliahou-Kervaire formula for graded Betti numbers of stable ideals to homogeneous ideals with linear quotients.
متن کاملOptimal Betti Numbers of Forest Ideals
We prove a tight lower bound on the algebraic Betti numbers of tree and forest ideals and an upper bound on certain graded Betti numbers of squarefree monomial ideals.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2016
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2016.02.003